Journal of Electronics & Computer Science, Vol.12, No.1, 2010

Consistent Execution of Concurrent
Transactions in Peer Data Sharing Systems

Md Mehedi Masud, Sultan Aljahdali

Department of Computer Science, Taif University, Taif, Saudi Arabia.
{mmasud, aljahdali}@tu.edu.sa

Abstract: In this paper, we investigate the mechanisms of transaction processing in a peer data
sharing system. A peer data sharing system is a collection of autonomous data sources, called peers,
where each peer augments a conventional database management system with an interoperability
layer (i.e. mappings) for sharing data and services. In this network, each peer independently manages
its database and can execute queries as well as updates over the related data in other peers. For
transaction processing mechanism, this paper focuses on the correct execution of concurrent
transactions in a peer data sharing system. A correctness criterion is introduced to ensure the
consistent execution of concurrent transactions in the system. In order to guarantee correctness, the
paper proposes an approach, called Enforced Serialization Order.

Keywords: database, transaction processing, peer to peer

1. Introduction shared globally among the peers by traversing the
transitive relationships among semantically related

In a P2P system, all participating computers (or BESLS:

peers) have compatible capabilities and
responsibilities, and exchange resources and services
through pair-wise communication, thus eliminating
the need for centralized servers. Until now, there are

many domain specific P2P systems (e.g. Freenet, ; .
Gnutella, SETIS@S$home, 1CQ, etc.) that have mappings [6] among databases in peers. However,
already i deployed " With a few ndtabli the vast majority of the literature on PDSs has
exceptions, currently implemented P2P systems lack focu§ed SN Y PIOSCSSINE, SUice, intuitively, d.a ta
data management capabilities that are typically sharing in a PDS occurs through query translation
found in a database management system (DBMS), and propagation across the network.

such as query and transaction processing.

In the last few years, steady progress has been made
in research on various issues related to PDSs, such
as data integration model, mediation methods [1, 2]
coordination mechanisms [3, 4, 5] and data-level

In this paper we investigate the execution of
transactions in a data sharing system. We observe
that transaction processing in a data sharing system
is similar to processing in a multidatabase system
(MDBS) [7, 8] in the sense that each system consists
of a collection of independently created local
database systems (LDBSs), each of which may
follow different concurrency control mechanisms.
Moreover, each system supports the management of
transactions at both local and global levels. Global
transactions are those that execute at several sites
and local transactions are those that execute at a
single site. In an MDBS, global level transactions

A peer data sharing system (PDS) combines both
P2P and database = management system
functionalities. The local databases on peers are
called peer databases. In a PDS, each peer chooses
its own data model and schemas, and maintains data
independently of other peers. Contrary to the
traditional data integration systems where a global
mediated schema is required for data exchange, in a
PDS, the semantic relationships exist between a pair
of peers, or among a small set of peers. Any peer can
contribute new data, schema information, or schema
mappings with other peers' schemas. The data can be

87

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

are issued to the global transaction manager (GTM),
and are decomposed into a set of global
subtransactions to be individually submitted to the
corresponding LDBSs. ’

However, in a peer data sharing system, a global
transaction is not decomposed, but rather propagated
as an entire transaction (that is, not the individual
read and write operations that constitute the
transaction). The remote peer that receives the
transaction considers the transaction as submitted by
local users. In MDBSs, transactions are executed
under the control of the GTM. One of the main
problems in MDBSs is ensuring serializability of the
global schedule under the assumption that local
schedules at each LDBS are serializable.

Aschedule Sy in a site sy is a sequence of operations
resulting from the execution of transactions located
on that site. A serialization graph for a schedule Sy is
a directed graph with nodes corresponding to the
transactions that are committed in S, and with a set
of edges such that T;—T; if T; conflicts with Tj in Sy.
In what follows, o,(x) denotes an operation o; of
transaction T, on database object x; w;(x) and r;(x)
denote write and read operations, respectively. A
transaction T; and T; are in direct conflict in
schedule S,, denoted by Ti—>T;, at site s, if and only

_if there exists operations 0,(x) in T; and oj(x) in T;,

Ti# T;, such that o,(x) followed by 0;(x), where one
of them is a write operation on a data item x and T;
does not abort before oi(x) is executed [8]. A
schedule S, is serializable if and only if the
serialization graph is acyclic [9]. A global schedule S
is a partial ordered set of all operations belonging to
local and global transactions such that, for any local
site sy, a projection of S on a set of global and local
transactions executing at site s, is the local schedule
Sk at site s, [8]. Global serializability is ensured if
there exists a total order defined over global
transactions that is consistent with the serialization
order of global transactions at each of the LDBSs.
Since global transactions are under the control of the
global transaction manager in MDBSs, the global
transactions' serializability is enforced by a GTM.

In contrast, a data sharing system is built on a
network of peers without a global transaction
manager or controller. However, we can assume that
each LDBS ensures the local serializability using the
local concurrency protocol. Since the execution of
concurrent transactions in a data sharing system is
similar to the execution in an MDBS, we also
consider the concurrent transactions' execution
consistency criteria as ensuring serializability.

88

The absence of a GTM in a data sharing system
makes it more challenging to ensure global
serializabilty since peers execute transactions
independently beyond any centralized control.

We observe that, although we assume that the LDBS
of each peer guarantees serializability, concurrent
transactions that execute in multiple peers may be
serialized in different orders in different peers,
resulting in an inconsistent execution of the
transactions in the system.

1.1 Motivating Example

Consider a data sharing environment consisting of
three peers: P, and P, with data items a, b, and ¢ and
P; with data items a, c¢. Consider the following
transactions T, and T, executed at P, concurrently.

T wi(@)w;(c), Tyt ra(c)wa(c)

Assume that the LDBS of P, produced the following
schedule:

Sl:wl(a)wl(c)rZ‘(c)w’_’(c)

Suppose that peers P, and P; are connected with P;.
Hence, after execution of T; and T,, P, propagates
them to P, and P;. Assume that when P, executes
the transactions it also executes the following local
transaction L.

Lo=ria(a)r2(c)

Assume that the LDBS of P, generates the following
schedule.
So=ra(@)ria(c)wi (@) wi(C)ra(c)wa(c),

Similarly, when P; receives the transactions it also
executes them using its LDBS and produces the
following schedule:

S;=w;(a)r(c)wy(c)wi(c)

If we observe we find that the resulting serialization
orders of T; and T, at Py, P,, and P; are as follows:

SO]: T]—) Tz,
SOzi Lz—) T] —)Tz, SO3I Tz—-) T)

Notice that each local schedule in each peer is
serializable, but the serialization order or conflict
relationship of T, and T, in the schedule S; at P; is
different with respect to the schedule S, at P,.

For ensuring database consistency in acquainted

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

peers over the acquaintances with respect to the
local execution of transactions in a peer, the
serialization order of the transactions must be same
in all the acquainted peers if there are direct conflicts
between transactions. It turns out to be more difficult
when local transactions cause indirect conflict
between global transactions that may not conflict
directly when they are initiated. Moreover, we need
to consider several failure-prone situations during
execution of transactions that can occur. For
examples, a peer may go offline when a transaction
is active in the network, a peer may fail due to
power fails or the system crashes, or a peer has
successfully executed a transaction but the
transaction has failed in one of its acquaintees.
Examples of a transaction failure are a transaction
abort to timeout, or a failure to pass the validation
test by the local transaction manager. We can
consider an offline status of a peer as a failure of a
peer. Ensuring consistent serialization order of
transactions in all participating peers considering
failure-prone situations is another important concern
in a data sharing system.

1.2 Objectives and Assumptions

Objectives:

This paper proposed an approach for ensuring a
consistent execution view of concurrently executing
transactions in a data sharing system. A transaction

is a sequence of read (e.g. SQL select) and write (e.g.

SQL update, delete, and insert) actions in a database.
Although we assume that each LDBS of each peer
guarantees serializability, but the transactions that
execute concurrently in multiple peers, may have
different execution views at different peers. We first
identify some potential problems for ensuring a
consistent execution view of transactions in a data
sharing system, and introduce correctness criteria in
order to ensure the consistent execution view of
transactions. We also propose one approach for
ensuring this correctness condition, namely the
Enforce Serialized Order method without violating
the autonomy of local peer database management
systems.

Assumptions:

1. When a user submits a transaction in a peer,
he/she is only aware of the local database schema,
and there is no global transaction manager or
coordinator in the system.

2. A peer is not able to control or synchronize the
execution of transactions in another peer.

89

3. Each LDBS has a mechanism for ensuring the
local serializability.

2. Preliminaries

For ease of presentation, we use the well-known
read-write model of transactions. We now recall the
basics of this model. Let a database be a (finite) set
D={ab,c,...} of data objects. A transaction T is a
sequence of database operations applied to a subset
of data objects D. Formally, T=(Oy,<1), where Oy, is
a finite set of operations and <y is a partial order of
operations that have been invoked by a transaction 7.
The operations of a transaction T consists of reads
(denoted by r(a)) and writes (denoted by w(a))
operations. Further, each 7 has begin and
termination operations commit (c) or abort (a).

The concurrent execution of transactions results in a
schedule. A schedule S is a pair (I's,<s), where I'g is
a finite set of transactions and <g is a partial order
over the operations of transactions in I's. The partial
order <g satisfies the property that it preserves the
order of steps within each transaction, (that is, <ric
<g, for each T;e I's.

The most commonly used correctness criteria for an
acceptable schedule is conflict serializability [10].
Consider a schedule S consists of transactions T; and
T;, then a transaction T, is said to conflict (direct
conflict) with T,, denoted by T.— T,, if there exist
operations o; in T; and o; in Tj, Ti# Tj, such that o;<s
o;, and o;, 0; access the same data item and one of
them is a write operation. By —* , we denote the
transitive closure (indirect conflict) of the — relation.

In our work, we call the conflict relation between
transactions as serialization order. The execution
views of a set of transactions T" in two schedules S;
and S; are same if the serialization orders of the
transactions are same in their execution. We assume
the commit order of two transactions as the
serialization order if there is no conflict between the
transactions. A schedule S is called conflict
serializable (serializable) if there exists a serial
schedule S’ such that the transactions in S have the
same serialization order as in S

Similar to the execution semantics and classification
of updates [20], transactions can be classified into
three categories, namely local, remote, and global.
We denote a transaction initiated in a peer P; by T..
If the transaction is local, that is the transaction is
executed only in the local database at P;, then we
denote it by L;. A remote transaction generated by a

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

peer P; from a'transaction T; for its acquaintee P; is
denoted T};. A global transaction is denoted by G,
which is a set of remote transactions. For ease of
presentation, we denote remote transactions
T, Tik,.... generated from T, as T,, since they are
actually generated from T;, and a global transaction
G; is represented with the initiator T;. Intuitively,
execution of any component transaction T3, Ty, T, ...
is called the execution of G;.

2.1 Properties of a Global Transaction

In a data sharing system, a global transaction
consists of a set of transactions that includes a global
transaction initiator and a set of remote transactions.
Each of the transaction .is called a component
transaction of the global transaction. Note that each
component transaction is an atomic transaction
resulted from the translation of another component
transaction. Each component transaction accesses
data items that are located in the peer where the
transaction is active. Unlike a global transaction in
an MDBS, a component transaction is not
decomposed into subtransactions to access data at
acquaintees. In order to access data at acquaintees,
the component transaction is propagated as an
atomic transaction after translation to each of the
acquaintees if there are data mappings between the
acquainted peers with respect to the data accessed
by the transaction.

3. Problems for Maintaining
Consistent Executions of
Transactions

A classic technique for preserving database
consistency during concurrent execution of
transactions is to organize interleaving transactions
such that their executions are atomic, recoverable,
and serializable. However, classic serializability has
known shortcomings when used as a correctness
criterion for distributed computing environments,
such as multidatabase systems, transactional
workflow executions [11], or P2P systems. First, it
requires close coordination and interaction among
sites, that is, the sites must agree on the execution of
global transactions in a specific and consistent
manner. Second, as distributed transactions tend to
be long lived, the use of serializability as a
correctness criteria would restrict data availability
12

One of the important issues for distributed
multidatabase systems is to maintain global

90

serializability of global transactions without
violating the autonomy of local databases. The main
problem occurs due to indirect conflicts between
global transactions which cause different serial order
of transactions at different sites. These problems
have been widely studied and numerous solutions
have been proposed, for example, in [13,14, 15,16].

Generally, in an MDBS, the global transaction
manager (GTM) plays an important role to ensure
the global serializability of global transactions in the
system. However, in a data sharing system there is
no GTM, and transactions are executed first locally
in each peer before being forwarded to the
acquaintees. Since global transactions are
propagated in a data sharing system from peer to
peer along the acquaintances, the globally consistent
execution of concurrently executing global
transactions in a data sharing system can be
achieved by ensuring the consistent execution in
each acquaintance that is included in the propagation
paths of the global transactions. With respect to the
execution of transactions in an acquaintance (i),
the acquaintance level consistent execution of
transactions between P; and P; is maintained if the
following two conditions are satisfied |17]:

1. All the operations of a transaction must be
executed in the same order in peers P; and P; of an
acquaintance (i, j).

2. For any concurrent execution of global
transactions, it is required to maintain the consistent
execution of the transactions over all the
acquaintances in the propagation paths of the global
transactions. Formally, for any acquaintance (j,k)
between P; and Py, if there are schedules S;=(I's;,<s;)
and S, =(I'g;,<g) in P; and Py respectively, and each
transaction in ['g, is a translation of a transaction in
[s;, then for all operations 0,,0, € S;, 0;<g 0; iff
01<gj 02,

The first condition simply enforces the same
execution order of the operations of a transaction at
the peers in an acquaintance. The condition can be
satisfied easily by forwarding each translated
transaction as a single message to the acquaintees.
Each acquaintee processes the transaction just like it
processes its local transactions. Therefore, the order
of the operations of a single transaction is
maintained. In order to meet the second condition,
we need to ensure the same execution views of
transactions in each acquaintee of a peer. Note that
the second condition cannot be fulfilled by sending
the transactions serially according to the local
serialization order of the sender since the sender has
no knowledge about the execution order of the

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

transactions at a remote peer. In the following
examples, we describe some of the problems that
occur during the concurrent execution of global
transactions over acquaintees. In Section 4, we
present an approach to ensure consistent execution
of global transactions over acquaintees.

Example 1[Direct conflict]

Consider a data sharing system shown in Figure 1.
Assume that peers P; and P, have data items {a, b,
¢}, and Ps has data items {a, c}. Suppose that the
transactions T, and T, executed at P; concurrently,
and P; produced the schedule S, as follows:

Tiwi(@w,(c), Trry(c)ws(cy)
Si=w,(@w,(c)r(c)wi(c)

Based on the data accessed by T, and T, P,
forwards them to peers P, and P; For ease of
presentation, we keep the same notation of T and T,
in P 2 and P 3

The forwarded transactions of T, and T, in P, and

P;s are as follows:

Tow@WE) g o @) W)

Tz - rafc; w(c) SOy Ty T,

{a, b, c}

Ty wa(@)ws(C)
T2 1 ra(c) wyc)

Ty 1 wy(@)ws(c)
T2 :ry(c) wo(C)

{a, b c} fa c}

La=rix(a)ri2(c)

S2= rap(@)rLa(C)ws(@)wa (ChraC)wa(C) S3= w;(a) ra(C)wa(C)wi(c)

SO, L, > Ty > T, S03 To> Ty
Figure 1: Inconsistent Serialization Order (Direct

Conflict)

(P2):Ti=w(@)w(c), T2=rxc)w,(c)
(P3): Ti=wi(@)w,(c), Ta=rs(c)ws(c)

Assume that peer P, executes the following local
transaction L, concurrently when it executes T, and
7.

(P2): L=r;2(a)r;2(c)

Consider that after receiving the transactions T; and
Ty, P, and P; generated the following schedules.

So=ri (@) ra(CIwi(@w(c)ra(c)wa(c),
Ss=w,(@)ry(c)wy(c)w;(c)

Therefore, the resulting serialization orders of T,
and T, at P;, P,, and P; are as follows:

SO/.’ T,—> Tg, SOQ L,—> T/“')Tg,
SOg.' Tgﬁ‘T/

91

Notice that each local schedule in each peer is
serializable, but the execution view of T; and T, in
the schedule S; at Ps is different with respect to the
schedule S; at P, Since each peer executes
transactions independently, and there is no central
controller, the resulting schedules at different peers
may be different. In order to keep the peer databases
consistent with each other, the execution view of the
transactions should be the same in each peer.

Example 2[Indirect conflict]

In this example, we show how the local transactions
cause different execution views of transactions in the
acquaintees of a peer P; even though -the
transactions have no conflict when the transactions
executed at P, Consider Figure 2, where
transactions T, and T, executed concurrently at P,
and the local transaction manager at P, produced
the schedule S,:

T:wi(@), Ta: wa(b)wa(c)
Si=w (@)w(b)w(c)
Based on the data mappings, P, forwards the
transactions to P, and P; as follows:

Ty wi(@) S1= wi(a) wa(b)w2(c)

Ta: wa(b) wa(c)

SO T1—» Ts

{ac}
Lo =ra(@)ri2(c) Ls =ris(@)rs(b)

S MR) $5= ns(@wi(a) walb)ris(b)

8§0;:Ti»L>Te . SO To—>Ll3—> Ty
Figure 2: Inconsistent Serialization Order (Inirect
Conflict)

(P2): Ti=w,(a), Ty=wi(c),
(P3): T)=w,(a), T-=wy(b)

Assume that the following local transactions
executed at the same time when P> and P; received
T, and T».

(P2): Ly=rs(a)riz(c),
(P3): Ls=r;s(a)r;3(b)

Consider that P, and P; generated the following
schedules.
So=wi(@)ri2(a)r;2(c)wi(c),
Ss=r;s(a)wi(@w:(b)r;3(b)

Notice that when T; and T> executed at Py, there was
no conflict between the transactions. Meanwhile,
when T, and T, executed at P they involved in

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

indirect conflict due to the presence of the local
transaction L3. Based on the execution views of T,
and T, at P, and P; we observe the following
serialization orders.)

SOZ.' T[ﬁ‘Lg'—)Tg,
SO;: T,—L3;—>T,

Notice that the serialization orders of T) and T at P,
and P; are different. Hence, acquaintance-level
consistent execution is not maintained.

In a multidatabase environment, the GTM has the
control over the execution of global transactions and
the operations they issue. The GTM can ensure the
global serializability by a direct or indirect control of
the global transactions. For example, altruistic
locking [14], 2PC agent [18], site graph [19], and
ticketing [13]. All the methods have a global
transaction manager which plays an important role
in ensuring the global serializability. Since in a data
sharing system there is no such GTM, the only
assumption we can make is that each peer ensures
the local serializability. Once the transactions are
forwarded to the acquaintees, the peer has no control
of the execution of transactions at the acquaintees.

4. Maintaining Acquaintance-Level
Consistent Execution of
Transactions

Since in a data sharing system transactions aré
executed locally and independently in peers, the
system does not require multi-site commit protocols
(e.g. two-phase commit), which tend to introduce

blocking and are thus not easily scalable.
Specifically, in a peer data sharing system,
transactions are executed locally, and then

asynchronously propagated over acquaintances after
their commitment. A consistent execution of
transactions in a peer data sharing system can be
achieved by ensuring the consistent execution of
transactions in each peer over each acquaintance that
is included in the propagation path of the
transactions.

We observe from the examples in Section 3 that the
inconsistent execution of transactions occurs at
different peers due to the independent execution.
However, for ensuring database consistency in
acquainted peers over the acquaintances with respect
to the local execution of a peer, the execution views
of the transactions must be same in all the
acquaintees of a peer if there are direct conflicts

92

between transactions. Fortunately, we don't need to
be worried about an indirect conflict between the -
transactions when it occurs in acquaintees. An
indirect conflict occurs due to the local transactions
in an acquaintee. When transactions have no conflict
at the time they initiate in a peer, then these
transactions can be executed in any order in the
acquaintees. Since the data constraint property
restricts [17] the access of the local and global
transactions in a database, therefore, different
execution views of transactions due to the indirect
conflicts do not create the database inconsistency.
This is because a global transaction does not read a
data item that is written by a local transaction. The
conflicts that can occur based on the data constraint
property between a local transaction L and a global
transaction T, are write-read and read-write. A
write-read conflict between T, and L occurs for
accessing a data item a, when a read operation of L
is followed by a write operation of T,. A read-write
conflict occurs ~ when a write operation of T, is
followed by a read operation of L. Therefore, if L
has a write-read conflict with T, then L does not
create a read-write conflict for the same data item
with another transaction T,. This is because T, and
T, had no conflict when they initiated. Similarly,
when L has a read-write conflict with T,, then L
does not create a write-read conflict with another
transaction T,. Therefore, when two global
transactions T; and T, execute at a peer and have no
conflict, then their different execution orders in the
acquaintees of the peer do not create any
inconsistency.

Authors in [17] generalize the two problems, and
introduce the notions for ensuring a consistent
execution of transactions in a peer and its
acquaintees. The notion is called acquaintance-level
serializable.

The acquaintance-level serializability guarantees the
same execution view of a set of transactions I' in a
peer and in its acquaintees. Although there is no
GTM in a peer data sharing system, a globally
consistent execution of transactions can be achieved
by ensuring acquaintance-level serializability in each
propagation paths of the transactions. In order to
maintain the acquaintance-level serializability, we
need to guarantee a consistent serialization order of
the transactions at all the acquaintees of a peer. We
know that when a set of transactions I is executed at
a peer P;, the transactions are executed immediately
at P. Therefore, P; generates a local schedule S;
without waiting for the execution of [' in its
acquaintees. After execution, P; forwards [to its
acquaintees. The execution and forward steps

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

continue until no propagation of I" is possible. Each
of the peer P, executes I' with the local concurrency
control, and generates a local schedule §;
independently. The main challenge is how to
guarantee a consistent serialization order in all §;
with respect to the order in S;. ‘

Authors in [17] proposed two approaches that
guarantee acquaintance-level serializability. In this
paper we propose another approach that also
guarantee acquaintance-level serializability. In the
following we describe the approach.

4.1 Enforced Serialization Order

We assume that each peer uses a function called
getSerializationGraph() that returns the serialization
graph (SG) of the currently executed global
transactions. When a peer forwards the transactions
to its acquaintees the peer also includes the SG with
the transactions. When a peer receives the
transactions, the LDBS executes the transactions
under the control of local concurrency control and
generates the serialization graph considering the

edges of the SG that is received with the transactions.

The SG logically creates a direct conflict between

transactions. Therefore, if a peer executes the-

transactions in different order other than it is in the
received SG, a cycle will be created. Thus, the peer
will reject the execution of transactions.

In the following, we illustrate the method with an
example.

Example 3 [Direct Conflict]
Consider the example 1. The schedule generated
from the execution of T; and T is given below.

Si=wi@w,(c)r(c)wi(c)

According to the method, the
returnSerializationGraph() function returns the
serialization graph SG,;: T)—=> T> at P,.

Based on mappings, P, creates the following
transactions for its acquaintees P, and P; and
forwards them to P, and P; respectively including
the serialization graph SG, with the transactions.

(P2):Ti=w(@w,(c), To=rs(c)ws(c)
(P3): Ti=wi(@)w,(c), Tr=ry(c)wi(c)

Suppose P, and P; receive the message (T, T,
T,—T,) and assume that the following schedules and
serialization graphs are generated by the respective
LDBS.

93

At Pa: So=r;(@)ri2(c)w i(@)wi(c)ra(c)wx(c),
SG:L,—»T;—> T,
N7, 5T,
At P3: Ss=w i (a)rs(c)ws(c)w,(c)
SG3.' T/ —)Tg—) T/
Note that the schedule S; is not allowed by the local
concurrency control of P;since a cycle is created.
On the other hand, if the local schedule at P; were

Ss=w(a)w,(c)r(c)wi(c), the
-serialization graph will be
SG3.' T[—)Tg
A7,
which would be permitted by the local concurrency
control at P; and therefore ensures acquaintance-
level serializability.

corresponding

Example 4 [Indirect Conflict]

Consider the example 2. The schedule generated
from the execution of T, and T at P, is given at
below.

Ti:wi(@), Ty wa(b)wfc)
Si=w(@wa(b)w-(c)

According to the method, the
returnSerializationGraph() function returns the
serialization graph SG,: T/— T» at P;. Assume here
the execution order of the transactions is the
serialization order.

Based on mappings, P, creates the following
transactions for its acquaintees P, and Ps; and
forwards them to P, and P; respectively including
the serialization graph SG,; with the transactions.

(Py): T)=w(a), Tr=w>(c),
(P3): Ti=w,(a), T;=ws(b)

Suppose P, and P; receive the message (T, T,
T, —T>) and assume that the following schedules and
serialization graphs are generated by the respective
LDBS.

At Py: S;=w(@)r;o(a)r;2(c)wx(c),

SGg.' 3@——) 2

At Ps3: S3= ris(@)w (@)wa(b)r; 3(b)
SG3.' L3"7‘ T/-—) Tg
R

Note that the schedules S» and S; are not allowed by
the local concurrency control of Prand P;since both
schedules have cycles in graphs. On the other hand,
if the local schedule at P; were

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

Fi2(@)r12(c) wi(@)w(c) or

wi(@)wa(c)rs(a)r; 5(c),

then the corresponding serialization graphs will be

SG;.'Lzm or
SG;.' T/%(g
2

which would be permitted by the local concurrency
control at P, and therefore, ensures acquaintance-
level serializability.

Similarly, if the local schedule at P; were
wi(@)wa(b)ri3(@)r;3(b) or
F13(@)r13(b)w (@)w,(b)

then the corresponding serialization graphs will be
SGj: T)=>T; or
Y,

SG.?-'m 2

which would be permitted by the local concurrency
control at P; and therefore, ensures acquaintance-
level serializability.

Our assumption of transaction processing in a peer
data sharing system is that transactions are not
generated continuously. We do not expect that users
continuously submit update request in a P2P system.
In a P2P system, generally, queries are more
frequent than updates. Even, if transactions are
continuous, according to our system, a peer forwards
transactions to acquainted peers after the complete
execution in the local peer.

5. Conclusion and Future Work

In this paper, we introduced a transaction model for
a peer data sharing system. Our approach is scalable
because a peer doesn't need any global knowledge of
the system and there is no global coordinator.
Transactions are processed by each peer
independently and consistency is maintained
recursively through acquaintances. A peer only
ensures the serializability of its immediate
acquaintances by ensuring acquaintance-level
serializability. Mainly, we contribute analysis of the
properties and semantics of transactions in a peer
data sharing system, a correctness criterion for
concurrent execution of transactions initiated at a
single peer, and propose an approach ensuring

94

global serializability without violating the autonomy
of LDBSs. .

A future goal is to investigate the transaction
processing when global transactions initiated form
many peers need to be executed concurrently in the
system and analyze the correctness criteria for
failure prone situation. Finally, we want to
investigate these problems in a large peer network
and show the scalability of the system.

References

[1] A. Y. Halevy, Z. G. Ives, D. Suciu, and I.
Tatarinov. Schema Mediation in Peer Data
Management System. In Proc. of the Int'l Conf.
on Data Engineering, pp 505-516, 2003.

[2] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork,
D. Suciu, and I. Tatarinov. The Piazza Peer-Data
Management System. In /EEE Transactions on
Knowledge and Data Engineering (TKDE),
16(7):787-798, 2004.

[3] L. Serafini, F. Giunchiglia, J. Molopoulos, and P.
Bernstein. Local Relational Model:A Logocal
Formalization of Database Coordination.
Technical Report, Informatica e
Telecomunicazioni, University of Trento, 2003.

[4] M. Arenas, V. Kantere, A. Kementsietsidis, I.
Kiringa, R.J. Miller, and J. Mylopoulos. The
Hyperion Project: From Data Integration to' Data
Coordination. In ACM SIGMOD Record,
32(3):53-58, 2003.

[5] P. Rodriguez-Gianolli, M. Garzetti, L. Jiang, A.
Kementsietsidis, I. Kiringa, M. Masud, R. Miller,
and J. Mylopoulos. Data Sharing in the Hyperion
Peer Database System. In Proc. of the Int'l Conf-
on Very Large Data Bases (VLDB), pp. 1291-
1294, 2005.

[6] A. Kementsietsidis, M. Arenas, and R.J. Miller.
Mapping Data in Peer-to-Peer Systems:
Semantics and Algorithmic Issues. In Proc. of
the Int'l Conf. on the Management of Data
(ACMSIGMOD), pp. 325-336, 2003.

[8] W. Litwin. From Database Systems to
Multidatabase Systems: Why and How. British
National Conference on Databases, Cambridge
Press, London, 1988.

[8] Y. Breitbart, H. Garcia-Molina, and A.
Silberschatz. Overview of . Multidatabase
Transaction Management. In The International
Journal on Very Large Data Bases, 1(2):181-240,
1992.

Journal of Electronics & Computer Science, Vol.12, No.1, 2010

[9] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison Wesley, Reading, MA, 1987.

[10] A. Zhang, M. Nodine, and B. Bhargava. Global
Scheduling for Flexible Transactions in
Heterogeneous Distributed Database Systems. In
IEEE Transactions on Knowledge and Data
Engineering, 13(3):439-450, 2001.

[11] M. Rusinkiewicz and A. Sheth. Specification
and Execution of Transactional Workflows. In
Modern Database Management, Addison-
Wesley, 1995.

[12] H. Garcia-Molina and K. Salem. Sagas. In Proc.

of the Int'l Conf. on the Management of Data
(ACMSIGMOD), pp. 249-259, 1987.

[13] D. Georgakopoulos, M. Rusinkiewicz, and A.
Sheth. Using Tickets to Enforce the
Serializability of Multidatabase Transactions. In
IEEE Transactions on Knowledge and Data
Engineering, 6(1):166-180, 1994.

[14] R. Alonso, H. Garcia-Molina, and K. Salem.
Concurrency Control and Recovery for Global
Procedures in Federated Database Systems. In
IEEE Data Englneermg Bulletin, 10(3):5-11,
1987.

[15] S. Mehrotra, R. Rastogi, Y. Breitbart, H.F.
Korth, and A. Silberschatz. Overcoming
Heterogeneity and Autonomy in Multidatabase
Systems. In Information and Computation,
167(2):132-172, 2001.

[16] W. Du and A. Elmagarmid. Quasi
Serializability: A Correctness Criterion for
Global Concurrency Control in InterBase. In
Proc. of the Int'l Conf. on Very Large Data
Bases (VLDB), pp. 347-355, 1989.

[17] M. Masud and I. Kiringa. Acquaintance Based
Consistency in an Instance-Mapped P2P Data
Sharing System During Transaction Processing.
In Proc. of the Int'l Conf. on Cooperative
Information Systems (CooplS), pages 169-187,
2007.

[18] A. Wolski and J. Veijalainen. 2PC Agent
Method: Achieving Serializability In Presence
Of Failures in A Heterogeneous Multidatabase.
In Proc. of Int'l Conf. on Databases, Parallel
Architectures and Their Applications
(PARBASE), pp. 321-330, 1990.

[19] Y. Breitbart and A. Silberschatz. Multidatabase
Update Issues. In Proc. of the Int'l Conf. on the
Management of Data (ACMSIGMOD), pp. 135-
142, 1988.

[20] MM Masud, . Kiringa, H. Ural. Update

95

Processing in Instance-Mapped P2P Data
Sharing Systems. Int. J. Cooperative Information
System 18(3-4): 339-379, 2009

Md. Mehedi Masud received his
PhD in Computer Science at the
University of Ottawa, Canada.
He is an Assistant Professor at
the Department of Computer
Science, Taif University, KSA.
His research interests include
issues related to P2P and
networked data management, query processing and
optimization, and information security. He has
published several research papers at national and
international journals, conference proceedings.

Sultan Hamadi Aljahdali, Ph.D.
secured B.S. from Winona State
University, Winona, Minnesota
in 1992, M.S. with honor from
Minnesota State University,
Mankato, Minnesota, 1996, and
Ph.D. Information Technology

% from the Volgenau School of
Information Technology and Engineering at George
Mason University, Fairfax, Virginia, U.S.A, 2003.
Currently Dr. Aljahdali is Dean of the college of
computers and information systems at Taif
University. His research interest includes software
testing, developing software reliability models, soft
computing for software engineering, computer
security, reverse engineering, and medical imaging,
furthermore he is a member of ACM, IEEE, and
ISCA.

	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf

